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SOME SCHUR INDICES 

BY 
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ABSTRACT 

Let X be an irreducible character of a finite group G~ Let p = ~ or a prime. Let 
me(x) denote the Schur index of g over Qe, the completion of Q at p. It is 
shown that if x is a p'-element of G such that X, (x)E Qp (x) for all irreducible 
characters Xu of G then m e (X)IX(x). This result provides an effective tool in 
computing Schur indices of characters of G from a knowledge of the character 
table of G. For instance, one can read off Benard's Theorem which states that 
every irreducible character of the Weyl groups W(E,), n = 6, 7, 8 is afforded by 
a rational representation. Several other applications are given including a 
complete list of all local Schur indices of all irreducible characters of all sporadic 
simple groups and their covering groups (there is still an open question 
concerning ~ne character of the double cover of Suz). 

w Introduction 

For p a pr ime or p = ~ let Qp denote  the comple t ion  of Q at p. If G is a finite 

group and X is an i r reducible  character  of G let mp (X) deno te  the Schur index of 

X with respect to Qp and let re(X) denote  the Schur index of X with respect to Q. 

THEOREM A. Let G be a finite group and let X be an irreducible character o[ G. 

Let p be a prime and let x be a p'-element of G. Assume that X, (x) ~ Qp 0r [or 

every irreducible character X~ of G. Then mp(x) l  X(X) in the ring of algebraic 

integers. 

T h e o r e m  A is a consequence  of a slightly more  general  result  proved in 

Section 3. The  proof is qui te  simple. Section 3 also conta ins  various corollaries of 

T h e o r e m  A. 

The  utility of T h e o r e m  A and  the other  results in Section 3 lies in the fact that 

the re levant  in fo rmat ion  can be der ived from the character  table of G, together  
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with a knowledge of the order of the elements in each class. This is something 

that can be read off with relatively little effort. This together with other known 

results about Schur indices make it possible to show that m ( x ) - 1  for many 

irreducible characters of many groups. For instance, Theorem A applied to the 

character tables of the Weyl groups of type E6, E7, E8 immediately yields that all 

irreducible characters of these groups have Schur index 1. This gives an 

alternative proof of Benard's Theorem [1] which asserts that all the irreducible 

characters of these groups are afforded by rational representations. 

Of course one can never deduce directly from Theorem A that m ( x ) ~  1 for 

some irreducible character X. Nevertheless Theorem A can be very helpful when 

used in conjunction with other known properties of the Schur index. Several of 

these are listed without proof in Section 2. An example is worked out in detail in 

Section 4. 

The combination of all these techniques is quite effective as is illustrated in the 

rest of this paper. Section 5 contains the computation of the local Schur indices 

of all irreducible characters of all simple groups of order at most 10 6. Section 6 

consists of an alternative proof of a result of G. J. Janusz [15] and contains the 

local Schur indices of all irreducible characters of the groups SL2(q). Section 7 

contains the computations of the local Schur indices of all the irreducible 

characters of all the sporadic groups and all of their central extensions. The 

results are summarized in Section 8. 

While Theorem A is surprisingly effective, it is not by itself, even in 

conjunction with Theorem 2.15, sufficient to show that mp(x) = 1 in all cases 

when this is so. For example, let ~0 be the irreducible character of Sp4(4) with 

q~(1)=18. Theorem A shows that mp(~O)=l for p # 2 , 5  and mp(~0)=<2 for 

p = 2, 5. However, as is shown in Section 5, mp (q,) = 1 for all p. It is also true in 

this case that if qJl, ~2 are rational valued irreducible characters of Sp4(4) distinct 

from ~ then (OlqJ2, ~) is even. Thus another simple method is ineffective for this 

character. 

In the last resort Schur indices can be computed by studying characters of 

quasi-elementary subgroups and applying Theorem 2.2. If p ~ 2, the Schur index 

mp (X) can be computed for an irreducible character X of a quasi-elementary 

group by using, for instance, Theorem 2.12. Unfortunately, it is frequently 

difficult to apply Theorem 2.2 as this requires precise information about the 

structure of quasi-elementary subgroups and their characters. In this paper 

Theorem 2.2 is only appealed to when it seems to be unavoidable. 

Theorem 2.7 due to Frobenius and Schur gives an effective way of computing 

m=(x). There is no known analogue of this for p /oo .  Theorem 2.12 due to 
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Benard is effective in case X is in a p-block with a cyclic defect group. It would 

be desirable to find a suitable generalization which works in all cases. Theorem 

A and Theorem 2.12 differ from most other results about Schur indices in that 

they require considerations of the columns of the character table, i.e., they do 

not apply to each irreducible character in isolation but need some information 

about all the characters of the group. 

Over the years I have received character tables from many individuals; these 

are acknowledged in the appropriate places below. However, I especially want 

to thank the following people. 

D. C. Hunt who computed the rational character table of BM and its cover, 

and who also computed the character table of Fi24. 

J. Neub/iser who supplied me with character tables of many groups, including 

finally a complete set of these for all the simple sporadic groups. 

E. Cleuvers who performed several computations in answer to questions 

which I had raised. 

w Properties of the Schur index 

This section contains a list of properties of the Schur index. Definitions and 

elementary properties can, for instance, be found in [7]. The following notation 

will be used: 

G is a finite group and X will always denote an irreducible character of G. 

K is a field of characteristic 0 and mr (X) is the Schur index of X with respect 

to K. 

re (x )  = mQ(x). 

THEOREM 2.1. Suppose that the character 0 of G is afforded by a K[G] 
module. Then mr (X ) I (X, 0). 

Let p be a prime and let H = A P  where A = (x) is a cyclic p'-group with 

A <~ H and P is a p-group. Let e be a primitive I A I th root of 1. Then H -- A P  
is K-elementary with respect to p if x', x i are conjugate in H only in case e i, e j 

are conjugate under the action of the Galois group of K(e) over K. 

The next result is due to Brauer [6] and was later rediscovered by Witt [23]. A 

proof can be found in [7]. 

THEOREM 2.2. Let e be a primitive I G [ th root o[ 1 and let p be a prime. Let L 

be a field such that K(X)C_LC_K(e ) and [K(e):L]  is the p-part of 
[K(e): K(x)]. Then there exists a subgroup H of G which is K-elementary with 
respect to p, and an irreducible character f of H such that Q(() c_ L, p ,~ (fro, X) 
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and m~(x)  and m~:(~) are divisible by the same power of p. 

In view of Theorem 2.2 the calculation of m~ (X) can be reduced to calculating 

Schur indices of irreducible characters ff of K-elementary groups and studying 

the corresponding induced characters ff~. It may however be rather complicated 

to survey all K-elementary subgroups of G and the remaining results in this 

section and the next are aimed at avoiding the direct use of Theorem 2.2 as much 

as possible. Of course many of these results are based on Theorem 2.2. 

THEOREM 2.3 (Benard and Schacher [5]). The.field Q(X) contains a primitive 

m(x)- th  root of 1. 

This result in particular implies 

COROLLARY 2.4 (Brauer and Speiser). If X is real valued then m(x)12. 

Define 
1 x(x2) 

For x ~ G let 1 + t ( x )  be the number of elements y in G with y : =  x. The 

orthogonality relations imply that 

(2.5) 1 + t (x)  = ~ v(X)X(x ). 

In particular 

(2.6) 1 + t = ~ v(X)X(1), 

where t = t(1) is the number of involutions in G. For a proof of the next result 

see, for instance, [7]. 

THEOREM 2.7 (Frobenius and Schur). (i) If X ~  X then ~(X)= O. 

(ii) Let R denote the field of real numbers. If X = ~, one of the following occurs : 

(a) mR (X) = 1 and u (X) = 1. 

(b) mR (X) = 2 and v(X) = - 1. 

Theorem 2.7 gives an effective way of computing m~(x). Together with (2.6) it 

yields the following useful consequence. 

COROLLARY 2.8. If Ex=~X(1) = 1 + t where t is the number of involutions in G 

then mR(X)= 1 for every irreducible character X of G. 

This next result is a weak form of a theorem of Benard [2]. 
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THEOREM 2.9. Let pl, p2 be prime divisors in Q0() of the rational prime p. Let 

K~ be the completion of Q(X) at p~ for i = 1,2. Then m~l(X) = mr2(X). 

An analogous result holds for Archimedean completions by Theorem 2.7. 

Thus mQp(X)= mQp(X') if X and X' are algebraically conjugate, for p - -~  or p 

any prime. Hence the following are well defined: 

m=(x) = ran(X), where R is the field of real numbers, 

mp (X ) = mop (X ) for any rational prime p. 

This notation will be used throughout the rest of this paper. 

The next result is due to Brauer. For a proof see e.g. [8] theorem IV.9.3. 

THEOREM 2.10. Let {Xu } be the set of all irreducible characters of G. Let p be a 

prime and let {9~, } be the set of all irreducible Brauer characters of G. Let D = (d~,) 

be the decomposition matrix. Then 

mp (Xu) ] du, [Qp (2,, ~,) : Qp ()u)] 

for all u, i. In particular m e (X ) -- 1 if  X is irreducible as a Brauer character. 

COROLLARY 2.11. If p ~ I GI then rap(X) = 1 for every irreducible character x 

of G. Hence, in particular, mp ( X ) ~  1 for only a .finite number of primes. 

The next result is due to Benard [31. An alternative proof can be found in [8], 
chapter VII, section 13. 

THEOREM 2.12. Let p be a prime and let B be a block with a cyclic defect 

group. Then F = Qp (9~ ) is the same for every irreducible Brauer character ~ in B. 

Furthermore, 

mp (x ) = [ F(x  ) : Qe (x )] 

for every irreducible character X in B. 

(i) If B contains exceptional characters and X is nonexceptional then Qe (X ) = F 

and so mp (X )= 1. 

(ii) If B does not contain exceptional characters then Qp (X) -- F for every 

irreducible character in B with at most one exception. Thus mp (X ) = 1 for all but at 

most one irreducible character X in B. 

COROLLARY 2.13. Let p be a prime and let B be a block with a cyclic defect 

group. If B contains an irreducible Brauer character ~ with Qp(~p)--Qp then 

mp (X ) = 1 for every irreducible character X in B. In particular this is the case if B is 

the principal block. 
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The remaining results in this section follow from the structure of division 

algebras over algebraic number fields and their completions. 

Let P denote the set of all rational primes. 

Let A(X ) be the simple algebra component of Q[G] corresponding to X. Thus 

Q(X) is the center of A(X). 

Let V(X ) denote the set of all (equivalence classes of) valuations of Q(X). 

For v ~ V(X ) let A(X)~ = A(X)@Q~Q(x)v, where Q(X)~ is the completion of 

Q(X) at v. 

Then re(X) is the Schur index of A(X ) and if v ~ V(X) such that v [p for 

p ~ P U{~}, then me(x) is the Schur index of A(X)o. 

THEOREM 2.14. A(X) is determined up to isomorphism by the set of A(X)o, 

v C V(X ) and m(x  ) is the least common multiple of all rap(X), p ~ P  U{~c}. 

Furthermore if re(X) = 2 then A(X) is determined up to isomorphism by the set of 

all mp (2), P E P U {oo}. 

THEOREM 2.15. Let q be a prime which divides m(x  ) and let q * be the exact 

power of q which divides m( ) ) .  Let Vo={v ]v E V(X), qClmo,~)o(X)}. Then 

I Vol> 1. Furthermore if q~ = 2 then t Vol is even. 

THEOREM 2.16. Let K be a .finite extension of Qp. Then 

mp (X) =mK (X)(rap (X), [K(x) :  Qp (x)]). 

w Proof of Theorem A 

Let G be a finite group and let p be a prime. Let {X~} be the set of all 

irreducible characters of G and let {~i} be the set of all irreducible Brauer 

characters of G. Let (d~i) be the decomposition matrix. 

THEOREM 3.1. Let K be a finite extension field of Qp. Let x be a p'-element in 
G. Let X = X. be an irreducible character of G. Assume that q~ ( x ) @ K (X ) for all i 
with d~#  O. Then mK(X)[X(X) in the ring of algebraic integers. 

PROOF. Since mn (X)] me (X) it suffices to prove the result in case K = Q, (x). 

Let H be the Galois group of a splitting field of K[G] over K. For each i let ~b~ 

be the sum of all the distinct conjugates of ~, under the action of H. Thus 

X(Y) = Y du,~, (y) for all p'-elements y in G, where i ranges over a suitable index 

set. Then 5, is the sum of [K(~,) : K] algebraically conjugate Brauer characters. 

Thus by assumption 

x(x)= Kl,P,(x). 
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Hence Theorem 2.10 implies the result. 

The following result clearly implies Theorem A. 

COROLLARY 3.2. Let x be a p'-element in G. Let B be the block containing X. 

Assume that Xv(x)EQp(x)  for all Xv in B. Then mp(x)]X(x) in the ring of 

algebraic integers. 

PROOF. An irreducible Brauer character in B is an integral linear combina- 

tion of irreducible characters in B as functions on p'-elements. Thus the result 

follows from Theorem 3.1. 

For the remaining corollaries in this section let X = X, be an irreducible 

character of G. Let n be a natural number and let x be an element of G with 
x n = l .  

COROLLARY 3.3. Suppose that Xo(x)EQe(x)  for all v and all primes p with 

p ~/ n. Then the following hold: 

(i) mp(x) lx (x)  for all primes p with p ~" n. 
(ii) If  n is a power of the prime q then me(x)]x(x  ) for all p ~  q,~. 

The following two results arise frequently in applications. 

COROLLARY 3.4. Suppose that X~ ( x )E  Qp (X) for all v and all primes p with 

p ~ n. Assume thatm(x)]2 and 2 X X(x). Then mp(x) = 1 [orallprimesp with 

p s  

COROLLARY 3.5. Suppose that n is a power of the prime q. Assume that x is a 

rational element (i.e., X, (x) E Q for all v). Assume further that X(X) is odd and 

Q ( x ) = Q .  Then mp (x ) = l for p ~ q, ~ and 

mq(x) = m=(x)= re(X)= 1 or 2. 

PRoov. By Corollary 3.4 me(x) = 1 for p ~ q , ~ .  By Corollary 2.4 m(x)12. 
The result now follows from Theorems 2.14 and 2.15. 

w An example 

In this section we will give all the details needed to compute the Schur indices 

of all the faithful irreducible characters of the double cover G = 2HJ of the 

simple group (~ -~ HJ. The table of faithful characters is reproduced here from 

[17]. See Table I. We will also sketch the computation of the Schur indices of the 

irreducible characters of Ur --- HJ. 
The simple group (~ has 2835 involutions. The group G has 631 involutions. 

Thus 
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17 

z,(X,)X, (1) = 632 - 2836 = - 2204. 
u = l  

By inspection X4 and X5 are the only non-real valued characters in Table I and 
17 

X. (1) = 2204. 

u r 

It follows that m ~ ( x , ) =  2 for 1 =< u _-__ 17, u ~ 4 , 5 .  

By Theorem 2.3 m(x~ 2 for 1 _<- u --- 17. 

By Corollary 2.11 mp(Xu) = 1 for all u and all primes p P 2 , 3 , 5 , 7 .  

By Theorem 2.10 mT(xu) = 1 for X, of 7-defect 0. Suppose that X, has 7-defect 

1. By Theorem A m p  (X,) = 1 for p ~ 7, ~. Let F be the quadratic unramified 

extension of Q7. Then QT(x,) = F for u = 1,2, 4, 5, 8, 9 and QT(XI3) = Q~. Thus by 

Theorem 2.12 mT(x~) = 1 for u = 1 ,2 ,4 ,5 ,8 ,9  and roT(X13)=2. We conclude 

from Theorem 2.15 that the following hold: 

m (X,) = m=(x,) = 2 for u = 1,2, 8, 9. (There are 2 Archimedean valuations.) 

m (/](4)  ~-- m ( X s )  = 1 .  

m (X13) = m=(xl3) = m7(x13) = 2. 

All other local Schur indices are 1 for these characters. 

By Theorem A m p ( x , ) =  1 for p r  and u = 10,11,12,14. Since Q(x~o) = 

Q(x~4) = Q it follows from Theorem 2.15 that 

m ( x , ) = m 3 ( x . ) = m ~ ( x , ) = 2  for u =10 ,14 ,  

and mp (X,) = 1 for u = 10, 14 and p ~ 3, ~. 

The characters X11, X~2, X~4 form a 3-block of defect 1. Since Q3(X11) = Q3(x12) is 

a quadratic extension of Q3, Theorem 2.12 implies that m 3 ( x l l ) =  m3(x12)= 1 

(and m3(x14)= 2 confirming an earlier result). Thus 

m(xu)  = m=(x,) = 2 for u = 11, 12. 

Fur thermore  m p ( x , ) = l  for u = l l , 1 2 ,  p ~ .  (There are 2 Archimedean 

valuations.) 

Let 2 be a 5-element with I C ( 2 ) [ = 5 0 .  Then X , ( x ) = ( - 3 + - ~ / - 5 ) / 2  for 

u = 6, 7. Thus by Theorem A m e (X,) = 1 for u = 6, 7 and p ~ 5, ~. There are 2 

Archimedean valuations in Q(x6) = Q(X7). There is only one prime divisor of 5 in 

Q(~/5). Hence Theorems 2.9 and 2.15 imply that 

m (X,) = m| ) = 2 for u = 6, 7 

and m p ( x u ) = l  for u = 6 , 7 ,  p ~ .  
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This leaves the 4 rational valued characters X3, X,5, X~,, X17. Unfortunately, 

Theorem A cannot be applied with x of order 5 since [Qp (x/5):Qp] = 2 for 

p = 2, 3,5. Before looking further at these we will consider the characters of 

= HJ. A character table can be found in [19]. Benard [4] has found all Schur 

indices for this group by using Theorem 2.2 and induce-restrict tables for certain 

subgroups. We will derive his results here more directly. 

By counting involutions it is straightforward to verify that m=(0) = 1 for every 

irreducible character 0 of G. By Theorem 2.3 m (0 )  [ 2 for all such 0. It is easy to 

verify by using Theorem A and the results of Section 2 other than Theorem 2.2 

that m ( 0 )  = 1 for every irreducible character except 02, where 02~(1) = 336. It 

should be emphasized that this result can be read off directly from the character 

table and does not involve the consideration of any proper subgroup of (~. 

There are irreducible characters 06, 0,0, 0~2 of (~ with 06(1) = 36, 01o(1) = 90, 

0,2(1) = 160 and Q(06) = Q(O,o) = Q(0,2) = Q. Direct computation shows that 

(,~15, X31]/6) ~- (X3, ,1(1506) : (,~3X15, 06) = 1, 

(X,6, X31/110) = (X3, X161/110) = (X3X,6, 1~10) = 1, 

(X,7, X31//12) : (X3,/~'171//12) : (X3X17, 012) : 1. 

By Theorem 2.1 this implies that for all p 

(4.1) mp (X3)= mp (X15)= me (X16)= mp (X17). 

At this point it appears to be necessary to consider proper subgroups for G. 

There exists an element y of order 5 in G such that Ce ( ~ ) =  ( ~ ) x  A, where 

A = As. The group C~ (y) cannot contain a copy of A5 as (X,)c~(y~ would not be a 

character. Thus C~ ( y ) =  ( y ) x  fi,, where ft, = SL2(5). Let T be a S2-group of fi,. 

Then T is a quaternion group of order 8. Let ff be the unique faithful irreducible 

character of T. Every faithful character of G vanishes on T - Z ( T ) .  Hence 

(X~)T = �89 (1)~ for 1 < u __N < 17. In particular, (X3, ~ )  = 7. Since mp (~) = 1 for 

p / 2 , o o  it follows from Theorem 2.1 that rnp (X3) = 1 for p / % 2 .  Thus (4.1) and 

Theorem 2.15 imply that 

r n ~ ( x , ) = r n 2 ( x , ) = m ( x , ) = 2  for u =3 ,15 ,  16,17 

and mp (X,) = 1 for u = 3, 15, 16, 17, p r 2, o0. 

This completes the computation of Schur indices of all faithful irreducible 

characters of G. It only remains to consider 021. 

Direct computation shows that 

(X3, 021/1(lO) = (X,o, 021X3) = (X10X3, 021) = 1. 
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If m2(4'2,)= 1 then 4'2,2'., is afforded by a Q2[G] module and so mdx3)=  1 by 

Theorem 2.1 contrary to what has been proved above. If m3(4 '21)  = 1 then 4'2~X3 is 

afforded by a Q3[G] module and s o  m 3 ( x l 0 )  = 1 contrary to what has been proved 

above. Thus by Theorem 2.15 

m 2 ( 4 ' 2 , )  = m 3 ( 4 ' 2 , )  = m (4 '2 t )  = 2 

and rap(4'2,) = 1 for p / 2 , 3 .  

w Simple groups of order less than 10 6 

The character tables of all simple groups of order at most 10 ~ can be found in 

[19]. The Schur indices of all these characters are probably known but we will 

indicate here how most of these can be determined very easily. 

By making use of Theorem A and some of the results mentioned in Section 2, 

and without considering any proper subgroups of G, one can very quickly 

deduce the following result by simply reading the various character tables. 

THEOREM 5.1. Let G be a simple group of  order less than 10 ~ and let 4' be an 

irreducible character of  G. Then mp (4') = 1 for p a prime or p = ~ except possibly 

in the following cases. (Only  one character in each set of  algebraically conjugate 

ones is listed.) 

G -~ PSU3(3) 4'(I) = 6 Q(4') = Q 

G ~- PSU3(4) 4'(1) = 12 Q(6)  = Q 

G -~ PSU3(5) 4'(1) = 20 Q(4') = Q 

G -  PSL3(5) 6 ( 1 ) =  124 Q ( 4 ' ) = Q ( i )  

G = H J  4 ' (1)=336 Q ( 4 ' ) = Q  

G - Sp4(4) 4'(1) = 18 Q(4') = Q 

m(4 ' )  = m~(4')= m3(4')= 2 

m(4'  ) = m=(4' ) = mf f  O ) = 2 

m(4') = m=(t)) = ms(O) = 2 

1<-_ m(4') = rod4') =< 2 

1_-< rap(4')_-<2 for p = 2 , 3 , 5  

1 <= m(4') = m2(4') = m5(4') =< 2 

The remaining open cases can be settled as follows. 

If G = PSL3(5) then G has irreducible characters 4'2, 4'6 with Q(qh)= Q, 

[Q(4'~) : Q] = 3, 4'ffl) = 30, 4,6(1) = 96 and (4'24'6, 4') = 1. Thus by Theorem 2.1 

m(4') = 1. 

If G ~ H J  it was shown in Section 4 that mp(4 ')= 1 for p / 2 , 3  and 

m (i/ t)  = m 2 ( 4 ' )  = m 3 ( i / t )  = 2. 
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Suppose that G = Sp4(4). Here it appears to be necessary to make use of 

Theorem 2.2. We will show that if H = A P  is Qs-elementary with respect to 2 

then ms(if)= 1 for every irreducible character ff of H. 

Let H --- A P  with P a 2-group. If 5 Y I A I then ms(if) = 1 for every irreducible 

character ff of H by Corollary 2.11. If 511A[ then I A [ = 5  or 15. 

If I A [ = 15 then Co (A) = A and A C_ H _C D3 x Ds, where D, is a dihedral 

group of order 2n. It is well known that every irreducible character of every 

subgroup of D3 • D5 has Schur index 1. 

Suppose that [A I = 5. Then I No (A) : Co (A)[ = 2 and a S2-group of Co (A) 

has exponent at most 2, since G contains no elements of order 20. Thus a 

S2-group of No (A) has exponent at most 4. Hence P has exponent at most 4 and 

so every irreducible Brauer character of H (with respect to p = 5) has values in 

Qs. By Corollary 2.13 ms(~)= 1 for every irreducible character ~ of H. By 

Theorem 2.2 ms(O)= 1. Hence m(~0)= 1. 

w The groups  SI_~(q) 

G. J. Janusz [15] has found all Schur indices rap(X) for all irreducible 

characters X of G = SL2(q). In this section we will derive a slightly more precise 

version of his results in a fairly direct manner. The notation of Table II will be 

used. A character table of G with q even can be found in [19]. 

THEOREM 6.1. Let G =SL2(q) and ' le t  (z )  be the center of G. Let G = 

G / ( z )  ~- PSL2(q). 

(I) Every irreducible character of  t~ has Schur index 1. In particular, if q is even 

then every irreducible character of G = G has Schur index 1. 

(II) Suppose that q is odd. Then m (X) ] 2 for all faithful irreducible characters X 

of G. Furthermore mp (X ) = 1 for p = ~ or p a prime except in the following cases: 

(i) m~(x)  = 2 unless e = - 1 and X = ~1 or ~2. 

(ii) Suppose that q is not a rational square. Let ~ = + 1 and let p be a prime 

with p [ q + 6 and p = 3 (mod 4). Then the following hold: 

I f 6  = e = - 1 and p2i is a primitive pkth root of 1 for some natural numbers k 

then m~ ( ~ ) = 2. 

I f  3 = e = 1 and tr 2j is a primitive p ~th root of 1 for some natural number k then 

m,(Oj) = 2. 

(iii) I f  q - 5e (mod 8) then 

m2(r/,)=2 i re  =1 and p 4 , = l ,  

m2(Oj)= 2 i r e = - 1  and or 4j = l. 
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(iv) I f  q is a rational square then 

m, (~,) = m, (~2) = 2. 

The  next  result  is requi red  for  the proof  of T h e o r e m  6.1. 

LEMMA 6.2. Suppose that q is odd and X is an irreducible fai thful  character of  

G with Q ( X ) =  Q. Then one of  the following occurs: 

(i) X = rl, and p n' = 1. 

(ii) 1 " = 0 j a n d ~ r  ~ j = l .  

(iii) q --- 5 (rood 8), X = ~, with p4, = 1. 

(iv) q - 3  (mod 8), X = 0j with o ""~ = 1. 

(v) q is a rational square and X = ~ or ~2. 

PROOF. If X = ~ or  ~ the result  is clear. Suppose  that  1" = ~ or 0j. Then  i , j  

are odd as X is faithful. 

If ~- is a pr imit ive v th  root  of 1 with r + r -~ E Q  then v 16. Thus  ei ther  t '  = rt~ 

and p 6~=1 or p4~=1 ,  or  1 " = 0 j  and 6 j = l  or  tr 4 j = l .  If 04~=1  then q ~ - 5  

(mod 8) as i is odd.  Similarly q --- 3 (mod 8) if ~r 4j = 1. 

PROOF OF THEOREM 6.1. If q ~ 3 then  m(1") [2  for all 1" by T h e o r e m  2.3. If 

q = 3  then X(1) I2  for  all X and so again m(1")[2.  

If q is even then every  charac te r  except  one,  say F, has odd degree  and so 

m ( x  ) = 1 for  1 ' / F .  By T h e o r e m  A m e(F) = 1 for  a l l p  ~ q + 1 and a l l p  f q - 1. 

Hence  m e 0 ( )  = 1 for  all p > 2  and so m(1") -= 1 by T h e o r e m  2.15. If q = 2  then 

1G I= 6 and the result is clear.  

F rom now suppose  that  q is odd.  

Let  1" be an irreducible charac te r  of G with (z )  in the kernel  of 1". Then  1" is a 

charac te r  of (~ -~ PSL2(q). Le t  D be the image in O of N~((b)) .  Then  D is a 

dihedral  g roup  of o rder  q + 1. If 1" = ~ ,  Oi, F then (I'D, A) = 1 for  some linear 

charac te r  A of D with A 2 = 1. H e n c e  (X, 1~) = 1 and so m(1") = 1 by T h e o r e m  2.1. 

If 1"(1)=�89 +--1) then 1"(1) is odd  and so m(1") = 1. This proves  (I). 

The re  is only one  involut ion in G and there  are exactly ~q~ (q + e)  involut ions 

in (3. H e n c e  (2.6), T h e o r e m  2.7 and Tab le  II imply that  

~, 1"(1)=�89 + e ) - I  = - ~  u(1')1"(1), 
X=,~ x 

where  1" ranges  over  all faithful i r reducible  characters  of G. Thus  u(1") = - 1 and 

hence by T h e o r e m  2.7 m s ( x )  = 2 for  every  faithful i rreducible charac te r  1' with 

1' = )~. This p roves  (II)(i).  

F r o m  now on suppose  that  1" is a faithful i r reducible  charac te r  of G. 
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Suppose first that X ( 1 ) = � 8 9  with 5̀ = - + 1 .  Then 2~/-~(I ___ ~/-~q) for a 

suitable choice of sign even if "x/eqEQ. Hence Theorem A implies that 

m, (X) = 1 for l #  r, oo. Since Q(x)  = Q(X/-~q), Q(X) has exactly one valuation over 

r. If Q(~/eq) = Q then there is one valuation at ~ and so m,(g ) = 2 by (II)(i) and 

Theorem 2.15 as in (II)(iv). If Q(X/eq)#  Q then either e = - 1  or there are 

exactly two valuations at ~. Hence m , ( x ) =  1 by (II)(i) and Theorem 2.15. 

Thus it suffices to consider the case that X ( 1 ) = q -  5̀ with 5̀ = _+ 1. 

We will consider two cases. 

Case A. E i t h e r Q ( x ) # Q o r x = r / i  w i t h p 6 ~ = l  o r ) c = 0 j  with o "~ j= l .  

Case B. Q(X) = Q and one of the following holds: 

q -= 5 (mod 8), X = '17 i '  p 4 i  = 1 ,  

q -= 3 (mod 8), X = Oj, 0 r4j = 1. 

In view of Lemma 6.2 these cases exhaust all possibilities. 

Suppose that Case A holds. As i < ~(q - 1) and j < �89 + 1), p2,#  1 and o-2i# 1. 

Hence there exists an element x of order 2pk /~  (q + `5), for some prime p and 

some natural number  k such that either p = 3 or x ( x ) ~ Q .  

Assume first that p #  2. Let K be the maximal subfield of odd degree in the 

field of (q + `5)th roots of 1 over Q. By Theorem 2.16 mxo, (X) = m, Oc) for all I. It 

follows from Table II that X, (x) E K(X(X))  for all irreducible characters X, of G. 

Hence Theorem A may be applied. If r is a root of unity with 74# 1 then 

2 X ( r + r  ~). Thus Theorem A implies that m, (x )  = 1 for l P p ,  oo. 

Suppose that rap(X)= 2. Then X cannot be irreducible as a Brauer character 

by Theorem 2.10 and so X cannot be in a p-block whose Brauer tree is of the 

form O �9 Thus X is in the unique p-block with Brauer  tree equal to 

O O O 

~(q - a) q - 6 '(q - ~) 

Thus 5̀ = e and X is in the field of p~th roots of 1 over Q for some natural 

number  v as the characters of degree ~(q~ - `5 )  are rational valued on elements 

whose order divides q + `5. Hence Theorem 2.12 implies that one of the following 

O c c u r s :  

, 5 = e - - - l ,  X=• , ,  p~-'P*--1, [ O p ( f , ) : O p ] = 2 ,  

6 = e = l ,  x = o j ,  o'Z~P*=l, [Qv(~: , ) :Qp]=2.  

Hence " , /eq~ Qp and so q is not a rational square, otherwise q - 1 (mod 4) and 

e = 1. Thus 
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(;1)=(;q): 1 
and so p -~ 3 (mod 4) as in (Il)(ii). 

Assume now that p = 2. Since X is faithful there exists an element x of order 8 

with X(X)= k/2. Since Xu ( x ) E  Q2(~/2) for all irreducible characters X, of G it 

follows from Theorem A that m~(x) -- 1 for l~  2,2.  Furthermore q =-- ~ (rood 8). 

Hence k/eqEQ2 and Theorem A implies that mr(x) = 1 for l~  r,~. Thus 

m ~ ( x ) = l  for l / 2 .  

Suppose finally that Case B holds. Then X(1)= 2d with d odd. Let T be a 

S2-group of G. Then T is a quaternion group of order 8. Let 0 be the unique 

irreducible faithful character of T. Then (X,~bG) = (Xr, g,) = d is odd. Thus 

m,(X) = 1 for 1~ 2 ,2  and m2(X) = 2 by Theorem 2.1 and the fact that X c Q  as in 

(II)(iii). 

w The sporadic simple groups 

This section contains the computations of the local Schur indices of all 

irreducible characters of all the sporadic simple groups and their central 

extensions. The results are summarized in the tables in Section 8. 

Benard [4] has computed the local Schur index of every irreducible character 

of G where G is a Mathieu group or one of the following: 

Jl, J2 = H J, A = HJM, HiS, McL. 

He used the results of Section 2, including Theorem 2.2, together with 

induce-restrict tables for various subgroups. With two exceptions we are able to 

recapture his results in a more direct fashion. 

The arguments used are pretty much the same for all cases and are illustrated 

by the example in Section 4. By counting involutions and using Theorem 2.7 and 

Corollary 2.8 it is possible to determine m~(x), though for some of the larger 

groups a computer is necessary. For instance, Ft has 194 irreducible characters, 

and most of these have degree at least 102~ I am indebted to Sidnie M. Feit for 

some of these computations. Theorem A and the corollaries in Section 3 

together with Theorem 2.12 are often enough to determine the local Schur index 

of the irreducible character X at all completions of Q(X) with at most one 

exception. Thus m,(x) is determined for all p by Theorem 2.15. This method 

yields that r e ( X ) = 2  in all cases. 

The sporadic groups and their covering groups will be treated individually 

below. In most cases the arguments described in the previous paragraph will not 

be discussed as they are straightforward. For some groups these arguments 
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suffice to handle all the irreducible characters. For the remaining groups they 

handle all but a small number of irreducible characters which must then be 

considered. The following method is very effective. 

Suppose that X, X1, X2 are irreducible characters of a group with X, E Q(X) and 

m ( x ~ ) = l  for u = l , 2 .  Then m(X)I(X1X2,X). Thus if (XIX2, X) is odd and 

m (X) < 2 it follows that m (X) = 1. The application of this argument requires the 

use of a computer and I am grateful to J. Neubiiser and E. Cleuvers who did the 

actual computing. 

In all cases considered here this method is sufficient to handle all the 

irreducible characters X with re(X)= 1. (This contrasts with the character ~b of 

Sp4(4) discussed in Section 5, where this method does not determine rn (~O).) The 

method is also effective in handling most of the remaining irreducible characters. 

In fact, a direct use of Theorem 2.2 seems to be necessary in at most four cases. 

Two of these were handled by Benard [4], another for F5 is handled below. 

There remains the case of the faithful irreducible character of the double cover 

of Suz of degree 228,800, which is still not completely settled. 

Throughout  the rest of this section G is a sporadic group and (~ is the 

universal central extension of G, Z = Z ( O )  is the center of (~. Irreducible 

characters of G will usually be denoted by X or X,. If X is nonprincipal then the 

kernel Z0 of X is contained in Z. It is known that Z is always cyclic. See [10] for a 

complete description of Z in all cases. Thus if ZoC_ Z then Z0 is uniquely 

determined by I Z : Zol. 

The Mathieu groups. The character tables of the Mathieu groups can, for 

instance, be found in [13]; those of some of their covering groups can be found in 

[16]. For the remaining character tables see Tables III and IV. Routine 

arguments show that mp (X) = 1 in all cases except if p = 5 and X --- X7 in the first 

part of Table IV, when ms(X7)= 2. 

3"1. G = t~. The character table of G can be found in [19]. Routine 

arguments show that rn(x)= 1 in all cases. 

J2 = HJ. See Section 4. 

J3 = HJM. I Z [ = 3. A character table of G can be found in [14] and a table 

of faithful irreducible characters of (~ can be found in [20]. It is routine to show 

that re(X) = 1 unless X is an irreducible character of G with X(1) = 816. In this 

case mp (X) = 1 for p ~  2, 3. See Benard [4] for a proof that m2(x) = m3(x) = 2. 

J4. G = O. I am indebted to J. H. Conway who sent me a character table of 

G. It is routine to show that m(x ) = 1 for all X- 

He = HHM. G = (~. I am indebted to J. McKay for a character table of G. It 

is routine to show that m(x ) = 1 for all X. 
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HiS. [ Z ] =  2. J. S. Frame and independently J. McKay constructed the 

character table of G. A. Rudvalis constructed the table of faithful irreducible 

characters of G and computed m=(x ) in all cases. He also showed that Q(i, x )  is 

a splitting field for every irreducible character X of (~. See [22]. 

There are two faithful irreducible characters ,~1, ,)(2 of G with X1(1)= 616, 

I'2(1) = 924 and Q(1`,) = Q(i) for u = 1,2. It is routine to show that rn(x) = 1 for 

all irreducible characters X of (~ except XI, t'2 and those listed in the table of 

Section 8. The values of mp(1") in the tables of Section 8 are also routine to 

derive as is the fact that mp (1"u)= 1 for u = 1,2 and p C  5. 

There are rational valued characters to, to2, tO3, tO, of degrees 176,770, 22, 1000 

respectively with m(tO,)= 1 for u = 1 , . . . , 4 .  Direct computation shows that 

(qJ~tk2,1"~) = 3 and (tO3tO4,1"2) = 1. Then m(1"u) = 1 for u = 1,2. 

McL. I Z I = 3. I am indebted to J. McKay for character tables of G and (~. 

Routine arguments show that m(1")= 1 for every irreducible character of 

except the two listed in the tables in Section 8. If 1"~, 1'2 are these two characters 

where 1"1(1) = 3520 and 1'2(1) = 4752, then it is routine to show that mp (1"~) is as in 

the table of Section 8. It also follows routinely that m, (1"2) = 1 for p / 3, 5. The 

fact that m5(1"2) = 1 and m3(1"2) = 2 depends on the consideration of subgroups of 

G. See Benard [4] for a proof. 

Suz. I ZI  = 6. A character table of G can be found in [24]. The remaining 

characters of G were first computed for the Cambridge Atlas. I am indebted to 

R. Griess for a copy of these. We will consider all the irreducible characters of 

with kernel Zo as Z0 ranges over all subgroups of Z. There are four possibilities 

for Zo and these are determined by [ Z : Z o l .  We will use the notation of 

character tables which I obtained from Neub/iser. 

[Z : Zot = 1. There exist irreducible rational valued characters 1"33, 1",1.0 with 

1"33(1) = 100,100 and 1"4o(1) = 197, 120. Routine arguments show that m(1") = 1 
for 1"~ 1"33,1"4o. There exist rational valued irreducible characters 1"3, 1"24 with 

1'3(1) = 364, 1'24(1)= 64,064 and (1"33,1"31"64) odd. Thus m(1'33)= 1. 

Routine arguments show that m5(1"~o) = 2 and me (1"40) = 1 for p ~ 2, 3, 5. There 

exists a pair of algebraically conjugate irreducible characters 1"3~, 1"32 in Q(~i-3) 

such that (1"4o, 1"~-1"3L1"32)= 1. Hence (1"40,1'~0 or (X4o,1"3~X32) is odd. Thus 

Q(~/13), and hence Q3, is a splitting field for 1"4o and so m3(1"40)= 1. Hence 

m2(1"40) = 2 by Theorem 2.15. 

IZ :Z01 = 6. There exists an irreducible character tO with tO(l) = 144, 144, 

O ( x ) = - 4 3 2  for an involution x and Q ( t O ) = Q ( ~ ) .  Routine arguments 

show that all faithful irreducible characters of G other than qJ have Schur index 

1. There exists an irreducible character 0 in Q ( ~ / - 3 )  with 0(i)  = 112,320 such 
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that Z is in the kernel of q,0 and (~0, ~O0) is odd. Thus (~b, 0X) = (~O0,X) is odd for 

some rational valued irreducible character X of G - - G / Z .  As Q ( s / Z 3 )  is a 

splitting field for every rational valued irreducible character of G it follows that 

m ( ~ )  = 1. 

I Z:Zol = 3. Routine arguments show that all Schur indices are 1. 

IZ:Zol = 2. There exist rational valued characters g. as follows: 

u 52 53 64 65 66 68 69 74 

X,(1) 20020 20020 80080 80080 100100 128128 137280 228800. 

Routine arguments show that mp (Xu) is as in the table in Section 8 for all p and 

all Xv not on the list above. The following computations were performed by 

J. Neubiiser and E. Cleuvers. 

There exist rational valued characters X2, X49 with X2(1) = 143, X49(1) = 4928, 

m (X2) = 1 and (X2/~49, X68)= 1. Thus mp (/](68)= /~'~p (/~49) for all p. 

There exist rational valued characters X~7, X75 with )07(1)= 25,025, X7s(])= 
277,200, m (X17) = 1 and (X75XIT, X,) odd for u = 64, 66, 69. Thus mp (X,) = 
me (X75) for all p and u = 64, 66, 69. 

(X75X,, X75X,) is odd and (X75X,, X4o) is even for u = 52, 53, 65. Thus there exists 

a rational valued irreducible character X (depending on u) with re(X) = 1 and 

(Xu, X75X) = (XuX75, X) odd. Hence m e (X,) = me (X75) for u = 52, 53, 65. 

Routine arguments show that m~()(74)=  2 and rap(X74)= 1 for p ~  ~ ,2 ,3 .  It is 

not yet settled whether m2(x74) = 1 o r  m3()(74) = 1. 

CO. 1. I ZI  = 2. The character table of (~ = Co. 0 was first computed by J. H. 

Conway. There exists a faithful irreducible character X of G with X(1) = 

210, 496,000. Routine arguments show that all other irreducible characters of (~ 

have Schur index 1. J. Neubfiser has computed that (X, XlXz) = 1 where X~, X2 are 

rational valued irreducible characters with XI(1)= 24, X2(1)= 16,347,825. Thus 

also m (X) = 1. 

Co. 2. I ZI  = 1. I am indebted to J. H. Conway for a character table of G. 

There is a rational valued irreducible character X with X(1)-= 368,874. Routine 

arguments show that all other irreducible characters of G have Schur index 1 

and m p ( x ) = l  for p ~ 2 , 5 .  There exists an irreducible character ~0 with 

~b(1) = 91,125 and Q(~0) = Q(V'--~).  As (X, ~Ot~ - ~O 2) = - 1 either (X, ~t~) or 

(X, ~ 02) is odd, hence Q(~-- -7)  is a splitting field for X. As ~ / ~  E Q2 it follows 

that m2(x)= 1. Hence re(X)= 1 by Theorem 2.15. 

Co. 3. [ Z [ =  1. A character table of G can be found in [9]. It is routine to 

check that m(x) = 1 for all )6 

Fiz2. [Z [ = 6. A character table of Fi22 can be found in [12]. I am indebted to 
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J. Neub/iser and H. Pahlings for character tables of the covering groups of Fi22. 

That for the double cover was constructed by T. Gabrysch, the remaining 

character tables were constructed by H. Pahlings. We will use the notation of 

these authors whenever possible. 

[Zo[ => 3. There is an irreducible rational valued character X of (~ = G/Zo with 

X(1) = 133,056. Routine arguments show that all other irreducible characters of 

(~ have Schur index 1. J. Neub/iser has computed that (X, XtX2) = 1 where X1, X2 

are rational valued irreducible characters with XI(1) = 78, X2(1) = 436,800. Thus 

also m 0r = 1. 

]Zol = 2. There are irreducible characters 026, 034, 03~ with Q(026)= Q ( ~ / - 3 )  

and Q(034) = Q(035) = Q(~/~33, x / - 2 )  such that 026(1) = 608,256 and 034, 035 are 

algebraically conjugate of degree 1,297,296. Routine arguments show that all 

other irreducible characters have Schur index 1 and these have Schur index at 

most 2. There is a rational valued character X64 of G with X64(1) = 2,555,904 such 

that (026, 044/~V64)= 43,131 is odd. Thus m ( 0 a 6 ) =  1. 

There exist algebraically conjugate characters X33, /](34 of G with Q(X33)= 
Q (X / - 2 )  and an irreducible character 01 of G with kernel Zo such that 

01(1)=351 and Q(01)=Q(N/ -3 ) .  Furthermore (01X33--01~t~34,034) = 1. Thus 

either (01X33, 03,) or (01X3,, 03,) is odd. Hence m(035) = m(034) --= 1. 

IZol =1 .  There are irreducible faithful characters 09 and 030 with 09(1) = 

123,552, 03o(1)= 2,594,592 and Q(09)= Q(03o)= Q ( ~ / -  3). It is routine to show 

that every other faithful irreducible character of G has Schur index 1, and that 

mp (09)= 1 for p ~  7 and m(03o)=< 2. It follows directly from Theorem 2.12 that 

m7(09) = 1 and hence m(09) = 1. Let 022 denote a faithful irreducible character of 

with 022(1)= 1,123,200. Let X65 be the irreducible character of G with 

X65(1) = 2,729,376. Then Q(022) = Q(03o), Q(x6s) = Q and (X6s022, 03o) = 123,277 is 

odd. Thus m(03o)= 1. 
Fi23. I ZI  = 1. The character table of G is due to D. C. Hunt. Routine 

arguments show that all Schur indices are 1. 

Fi~4. I Z I = 3. The character table of Fi24 was computed by D. C. Hunt. The 

faithful rational irreducible characters of Fi24 were  computed by T. Gabrysch. 

Using these results H. Pahlings was able to compute the character table of Fi24 

and I am indebted to him for sending me a copy. 

I Zol = 1. Routine arguments show that all Schur indices are 1. 

I Zol = 3. There exist algebraically conjugate irreducible characters X97, X98 in 

Q ( ~ / ~ )  with X97(1) = 77,007,684,600. Routine arguments show that if X ~ .~97, ,~98 

is an irreducible character of G then re(X) = 1. There exist algebraically 

conjugate irreducible characters X79, Xso in Q(N/~)  with X79(1) = 197,813,862,400 
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and (XT~X97, X79-  Xs0) = - 1. T h e r e f o r e  (X97, X79X,) = (X97)(/79, ,~u ) is odd for u = 70 

or 80. Thus Q(X/13) is a splitting field for X97 and so rn(x97) = m(x98)= 1. 

LyS. I z I  = 1. A character table can be found in [18]. Routine arguments 

show that all Schur indices are 1. 

Ru. [Z I = 2. R. Lyons andI  had computed the character table of G and part 

of the character table of (~. P. Fong computed the character table of (~ and we 

will use his notation. 

The group G has a 2-block of defect I. Using this and routine arguments it 

follows that m(x)= 1 for every irreducible character X of G except for .)(36, 

where X36(1) = 105,560. There exist rational valued characters Xg, X35 with 

X,(1) = 75,400, X35(1) = 52,780 such that (X9)t/35, X36) = 1. Hence m (,)(36) ~-- 1. 

There are rational valued faithful irreducible characters X, of G for u = 

42, 43, 52 with X42(1) = 250, 560, X47(1) -- 48, 256, X52(1) = 87, 696. Routine argu- 

ments show that mp(xo) is as in the table in Section 8 for all p and all 

v ~ 4 2 , 4 3 , 5 2 .  Furthermore, r n ~ ( x , ) = 2  and rnp(g, )= 1 for u ~ , 2 , 3 , 5 .  Also 

m3(x42) = m3(x52)=  1. 

There exists an irreducible character X44 with Q(x44)= Q(i)  and X•(1)= 28 

such that (X44X36,X,) is odd for u = 4 2 , 4 3 , 5 2 .  Hence Q(i),  and thus Qs, is a 

splitting field of each X,. Therefore ms(x,)= 1 for u = 42,43,52.  Consequently 

rnv (Xu) = 1 for p ~ 2, ~ and so m2(x,) = 2 for u = 42, 52. 

There exists a character X59 with Q ( X 5 9 ) = Q ( ~ / - 5 ) ,  x5~(1)=7280 and 

(,~59,~36, ,~43) odd. Thus Q ( X / - 5 ) ,  and hence Q3, is a splitting field for X43. Thus 

m3(x43) = 1 and  so  mz(x43) = 2. 

Table (a) Table (b) 

u X.(1) u X.(I) 

112 1711786747207680 
156 7679219111313750 
160 7863520369985280 
167 9558000449712000 
183 14220776132062500 
195 4322693806080 
196 10177847623680 
221 1566852857856000 
240 8740741152000000 
227 3824419701473280 
225 2995626807613440 
241 12604975138529280 
245 24515659148820480 

2 4371 
3 96255 
4 1139374 

147 5257393731060471 
180 13046344927150080 
182 14014628339712000 
197 17069098618880 
244 24089453696000000 
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OS = O 'Nan .  [Z[ - -3 .  A character table for (~ can be found in [21]. 

Routine arguments show that all Schur indices are 1. 

F 2 = B M .  [Z 1=2. A table of rational characters of G and (~ was first 

constructed by D. C. Hunt and I am indebted to him for a copy of this. Using this 

table, H. Pahlings constructed the character table of (~. In the notation of H. 

Neub/iser there exist rational valued irreducible characters X, as in table (a). The 

first five are irreducible characters of G, the last eight are faithful. Routine 

arguments show that re(X) = 1 for )r X, as u ranges over the list in table (a). 

The characters in table (b) are all rational valued and J. H. Neub/iser and E. 

Cleuvers have shown that (X,, XvXw) is odd as u, v, w range over the following 
values: 

U /) W 

112, 160, 182 2 182 

156, 167 2 180 

195, 196 3 244 

221,225, 240, 241 2 197 

227 2 247 

245 4 247 
t 

Thus m (gu)= 1 for all u. 

F1 = M = FG. [ Z [ =  1. The character table of G is due to B. Fischer, D. 

Livingston and M. Thorne. I am indebted to S. Smith who sent me a copy. 
Routine arguments show that rn(x ) = 1 for all irreducible characters X- 

1=3 = Th. t Z [ = 1. I am indebted to J. G. Thompson for a character table of 

G. Routine arguments show that re (X)=  1 for all irreducible characters X. 

F5 = Ha. IZ[ --- 1. A character table of G can be found in [11]. There exists a 

rational valued character X with g (1 )=  2,661,120 such that every irreducible 

character of G distinct from X has Schur index 1. Furthermore rap(X)= 1 for 

p ~  2,3. We will show that m 3 ( x ) =  I (and hence rn2(g)= 2) by using detailed 

information about G. This can all be found in [11] and we will use the notation 
used there. 

A Sz-group of C(3B)= Qs is a quaternion group of order 8; 2B, 4c E C(3B), 

2~.3s  = 6c and 4c'3B = 12c. 

Let S be a S2-group of N((3s)) and let H = (3B)S. Then I S :Qs[  = 2  and by 

[11], lemma 2.8 S/(2B)= Z2 x Z2 • Z2. Thus S has exponent 4. 

Let ~0 be the faithful irreducible character of C(3B)/(3B) = Os. Let 01, 02 be the 
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extensions of q~ to H/(38) = S. Let o 9 / 1  be a linear character of (38) and let 

to = (wq~) H. One gets the following table of values: 

1 28 3~ 6c 

)t' 2~(10395) 3.2 ~ - 54 6 

0o, u = 1,2 2 - 2  2 - 2  

tO 4 - 4  - 2  2 

Furthermore xOu, Xto vanishes on elements of H other than 1, 2B, 38 or 6c. Thus 

-a - 1  ~.X(x)O,(x  ) ~ - 4 ( - 5 4 - 6 ) ~ - 1 6 . 1 5  (mod28), 
x E H  

X(x)to(x-')=4(54+6)~ 16.15 (mod 2~). 
x E H  

Therefore  (X, 0~) and 0r to) are odd. 

If 0, is real valued then m=(x ) = m=(O,) = 2 which is not the case. Therefore 

Q(0u) = Q(i) as S has exponent 4. Thus [Q3(0u) : Q~] = 2 and so m3(x) = m3(to) = 

2 by Theorem 2.12. 

w Schur indices of the sporadic groups 

G is a sporadic simple group. G is the universal covering group of G. It is 

known that Z = Z((~)  is always cyclic [10]. Thus Zo is uniquely determined by 

fZ:Zol. 

Table A. I z : z o l = l  

G X(1) Q(x) M ( X )  

�9 12 = H J  336 Q 2, 3 
J3 = H J M  816 Q 2, 3 
McL 3520 Q ~, 5 

[x(~') = - 64, ~- an involution] 
McL 4752 Q :c, 3 
F5 (Harada) 2,661,120 Q 2, 3 
Suz 197,120 Q 2, 5 

Table B. I Z : Z o ] = 4  

M22 176 Q(i) 5 
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Table C. I Z : Z o ] = 2  

G X(1) Q(X) M(X) 

M~2 32 Q ~c, 2 

J2 = H J  6 Q (x/5) :~ 
14 Q ~,2 
56 Q(~/5) zc 
64 Q(',/5) 
84 Q ~, 3 

126 Q(~/5) zc 
216 Q zc,7 
252 Q ~c 3 
336 Q zc 2 
350 Q ~c 2 
448 Q ~, 2 

HiS 1000 Q ~c,7 
1792 Q zc 2 
1848 Q zc, 3 
2520 Q(V5) 

Ru 8192 Q(V29) 
34, 944 Q 2, 3 
48, 256 Q ~c 2 
87, 696 Q ~, 2 

221,184 Q zc, 2 
250, 560 Q ~c, 2 

Suz 220 Q ~c, 2 
4, 928 Q :c, 5 

20, 020 Q ~, 2 
20, 020 Q ~c 2 
35, 100 Q(V21) 
60, 060 Q(V5~ 
61,236 Q(N/13) zc 
78, 872 Q(',/2) 
80, 080 Q ~c, 2 
80, 080 Q :c 2 

100, 100 Q ~c, 2 
102, 400 Q 2,11 
128, 128 Q ~,5 
137, 280 Q ~, 2 
144, 144 Q(~/3) 
192, 192 Q :c, 5 
197, 120 Q ~, 2 
228, 800 Q ~, 2 or 3 
277, 200 Q ~, 2 
315, 392 Q ~c 5 
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T a b l e  III. Fa i th fu l  C h a r a c t e r s  of  G = 2M~ 2 

is the  i m a g e  of  x in t~ = M~z 
(only  c lasses  o n  w h i c h  no t  all c h a r a c t e r s  van i sh  a re  l is ted)  

I C e ( s  26.3~.5.11 192 54 36 10 6 8 S 10 11 11 

I(s 1 2 3 3 5 6 S 8 10 11 11 

X~ 10 - 2  1 - 2 0 1 ~ - a 0 - 1 - 1 

X2 10 - 2  1 - 2  0 1 - ~ a 0 - 1 - 1 

X3 12 4 3 0 2 1 0 0 0 1 1 

X4 32 0 - 4  2 2 0 0 0 0 - 1 - 1 

X5 44 4 - 1 2 - 1 1 0 0 fl 0 0 

X6 44 4 - 1 2 - 1 1 0 0 - ~ 0 0 

X7 110 - 6  2 2 0 0 u a 0 0 0 

X~ 110 - 6 2 2 0 0 - a - a 0 0 0 

X9 120 8 3 0 0 - 1 0 0 0 - 1 - 1 

g ,o  160 0 - 2 - 2  0 0 0 0 0 - h - 

X -  160 0 - 2 - 2  0 0 0 0 0 - A - h 

-: +V--q: 
= V--:, ~ = V---~, x - 

2 

T a b l e  IV. F a i t h f u l  C h a r a c t e r s  o f  G = 4M:2 a n d  12M22 

is the  i m a g e  o f  x in t3 = M ~  

(only  c lasses  o n  w h i c h  n o t  all c h a r a c t e r s  van i sh  a re  l is ted) 

[ C ~ ( s  I 27.32.5.%11 36 5 7 7 8 11 11 

I(~)1 1 3 5 7 7 8 11 11 

4M22 X, 56 2 1 0 0 2 a  1 1 

g~ 56 2 1 0 0 - 2 a  1 1 

X3 144 0 - 1 - h - A 0 1 1 

X4 144 0 - 1 - A - h 0 1 1 

X5 160 - 2  0 - 1 - 1 0 - ~ - t1 

X6 160 - 2  0 - 1 - 1 0 - ~ - 

~7 176 - 4  1 1 1 0 0 0 

Xs 560 2 0 0 0 0 1 1 

12M22 XI 120 0 0 1 1 2 a  - 1 - 1 

X2 120 0 0 1 1 - 2 a  - 1 - 1 

X3 144 0 - 1  - A  - A  0 1 1 

X, 144 0 - 1  - A  - A  0 1 1 

X5 336 0 1 0 0 0 - ~ - 

X6 336 0 1 0 0 0 - ~ - 

X7 384 0 - 1 - 1 - 1 0 - 1 - 1 

- 1 + x / - - 5  - l + X / - l l  

a = x /2 ,  A - 2 , /x 2 
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Each of the above tables contains a complete list of all irreducible 

characters X of t~ with kernel Z0 which have Schur index m ( x ) > l .  One 

character from each set of algebraic conjugates is listed. In all cases but one X is 

determined by its degree. 

In all cases re(X)= 2. Thus if p ranges over all primes and ~ then 

M(X) ={p l mp(x)~ 1} ={pimp(X)=2} 

together with Q(X) determines the corresponding division algebra. Observe that 

mp(x)~ 1 for at most 2 places of Q(X) in all cases. 

The list is complete, though for one character of the double cover oI Suz the 

answer is not complete. In particular it is complete for all the sporadic simple 

groups. 

Some of these results had previously been obtained by M. Benard [4]. 

4. 
5. 
6. 
7. 
8. 

1982. 
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